Late Holocene glacial advance and ice shelf growth in Barilari Bay, Graham Land, west Antarctic Peninsula

Andrew J. Christ1,3, Manique Talaia-Murray1, Natalie Elking1, Eugene W. Domack1,§, Amy Levender2, Caroline Lavionie3, Stefanie Brachfeld4, Kyy-Chool Yoo5, Robert Gilbert6, Sun-Mi Jeong7, Stephen Petrushek2, Julia Wellner8, and the LARISSA Group9

1Department of Geosciences, Hamilton College, Clinton, New York 13323, USA
2Department of Geology, Colgate University, Hamilton, New York 13346, USA
3Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS), Borgo Grotta Gigante, Sgonico 34010, Italy
4Department of Earth and Environmental Studies, Montclair State University, Montclair, New Jersey 07043, USA
5Korean Polar Research Institute, Incheon, 406-840, Republic of Korea
6Department of Geography, Queen’s University, Kingston, Ontario K7L 3N6, Canada
7Antarctic Research Facility, Florida State University, Tallahassee, Florida 32306-4100, USA
8Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA

ABSTRACT

Three marine sediment cores were collected along the length of the fjord axis of Barilari Bay, Graham Land, west Antarctic Peninsula (65°55’S, 64°43’W). Multi-proxy analytical results constrained by high-resolution geochronological methods (210 Pb, radiocarbon, 137Cs) in concert with historical observations capture a record of Holocene paleoenvironmental variability. Our results suggest early and middle Holocene (7022–2815 cal. yr B.P.) retreated glacial positions and seasonally open marine conditions with increased primary productivity. Climatic cooling increased sea ice coverage and decreased primary productivity during the Neoglacial (2815 to 730 cal. yr B.P.). This climatic cooling culminated with glacial advance to maximum Holocene positions and expansion of a fjord-wide ice shelf during the Little Ice Age (LIA) (ca. 730–82 cal. yr B.P.). Seasonally open marine conditions were achieved and remnant ice shelves decayed within the context of recent rapid regional warming (82 cal. yr B.P. to present). Our findings agree with previously observed late Holocene cooling and glacial advance across the Antarctic Peninsula, suggesting that the LIA was a regionally significant event with few disparities in timing and magnitude. Comparison of the LIA Antarctic Peninsula record to the rest of the Southern Hemisphere demonstrates close synchronicity in the southeast Pacific and southern most Atlantic region but less coherence for the southwest Pacific and Indian Oceans. Comparisons with the Northern Hemisphere demonstrate that the LIA Antarctic Peninsula record was contemporaneous with pre-LIA cooling and sea ice expansion in the North Atlantic–Arctic, suggesting a global reach for these events.

INTRODUCTION

The Antarctic Peninsula (AP) is among the fastest-warming regions on the planet, with atmospheric temperatures rising at a rate of +3.4 °C per century, exceeding five times the global rate (Vaughn et al., 2003). Ice shelf retreat and collapse in the AP—notably documented by the breakup of Larsen Inlet in A.D. 1989 (Skvarca et al., 1999) and of the Prince Gustav Channel and northern Larsen A ice shelves in A.D. 1995 (Rott et al., 1998), and the catastrophic and unprecedented collapse of the Larsen B in A.D. 2002 (Scambos et al., 2003; Domack et al., 2005)—have occurred within the period of recent rapid regional warming, suggesting the southward movement of the −5 °C to −9 °C isotherms, the limit of ice shelf viability (Morris and Vaughn, 2003). Recent removal of ice shelves has facilitated and accelerated grounded ice loss (Scambos et al., 2004; Ferrigno et al., 2008; Berthier et al., 2012). Regionally, 87% of 244 observed glacier fronts in the AP have retreated from historical positions since A.D. 1953 (Cook et al., 2005). Ice shelf collapse and associated ice loss in the AP therefore will contribute to future global sea-level rise as regional and global climatic warming continues (Mercer, 1978; Vaughn et al., 2003; Bentley et al., 2009).

The stability and behavior of ice shelves across the AP varied spatially and temporally during the Holocene (Pudsey and Evans, 2001; Brachfeld et al., 2003; Gilbert and Domack, 2003; Bentley et al., 2005; Hodgson et al., 2006), suggesting a set of complex forcing factors that control the regional climate system. The recent warming trend should be placed in the context of the entire Holocene climate history, specifically with respect to records of ice shelf expansion and collapse. Furthermore, late Holocene records must be documented, specifically millennial- to century-scale climate oscillations (such as the Little Ice Age, LIA), to distinguish the climate events and environmental changes that immediately precede the current regional warming trend and further resolve complexities in the regional and global climate system.

The most recent and severe climate anomaly of the Neoglacial period, the LIA, is classically defined as the period of glacial advance to maximum Holocene positions in the European Alps between A.D. 1550 and 1800 (Lamb,
South of the polar front in the AP and surrounding sub-Antarctic islands, the available terrestrial glacial and marine sedimentary records indicate glacial advance and climatic cooling broadly during the LIA. On King George Island in the South Shetland Islands, radiocarbon dates of mosses incorporated into Holocene moraines suggest LIA advance of the Collins Ice Cap after 650 cal. (calibrated) yr B.P. (A.D. 1300) (Hall, 2007). Further southeast at James Ross Island in the northeastern AP, a Holocene climate history extracted from an ice core documents a period of late Holocene cooling that supported regional ice shelf expansion beginning at 2500 yr B.P. with a particularly cold span between 800 and 400 yr B.P., but does not indicate a LIA event correlative with the Northern Hemisphere event (Mulvaney et al., 2012). In the eastern AP, apparent exposure ages of glacial erratics indicate expanded ice cover between 600 and 100 yr B.P., suggesting glacial advance and expansion of the Larsen A and Prince Gustav ice shelves during the late Holocene. Radiocarbon and 210Pb activity series (Gilbert and Domack, 2003) and geomagnetic paleointensity chronologies (Brachfeld et al., 2003) of sediment cores collected in the former Larsen A ice shelf area confirm expansion at a maximum age of 700 yr B.P. and minimum age of 400 yr B.P., followed by modern disintegration in A.D. 1995. On Anvers Island in the northwestern Antarctic Peninsula, terrestrial organic matter exposed by recent glacial retreat indicate that the Marr Ice Piedmont was at or landward of present glacial positions 970–700 cal. yr B.P. (A.D. 1050–1250) (Hall et al., 2010).

Late Holocene climate records from sediment cores extracted from the west AP indicate a similar Neoglacial cooling trend and suggest the presence of a LIA climate signature between 700 and 150 yr B.P. (A.D. 1300 and 1850) (Brachfeld et al., 2002; Domack and Ishman, 1993; Domack et al., 1995, 2001; Domack and McClennen, 1996; Leventer et al., 1996, 2002; Shevenell et al., 1996; Harris et al., 1999; Taylor et al., 2001; Warner and Domack, 2002; Milliken et al., 2009; Allen et al., 2010; Hodgson et al., 2013). In Lallemand Fjord, the advance of the Müller Ice Shelf at ca. 400 yr B.P. (ca. A.D. 1600) is recognized as a decline in productivity and an increase in fine-grained siliciclastic sedimentation, but is ultimately inferential with regard to any change in the grounding line position (Domack et al., 1995). While evidence for the LIA climate exists in the west AP, the precise timing of LIA glacial advance and retreat is constrained at only a few sites and is otherwise poorly documented across the region, particularly in glacial marine environments (Bentley et al., 2009).

In this paper we present the first precise chronology of LIA glacial advance and subsequent retreat in Graham Land, west AP. Sediment cores were collected from the entire length of the Barilari Bay during the LARISSA (Larsen Ice Shelf System, Antarctica) cruise in early 2010 aboard the RV/IIB Nathaniel B. Palmer (NBP10-01). Prior to NBP10-01, Barilari Bay had not been subjected to extensive scientific study. This fjord closes a geographic data gap along the west AP between the Danco Coast (Domack and Ishman, 1993; Domack and McClennen, 1996; Griffith and Anderson, 1989; Harris et al., 1999) and Palmer Deep (Domack et al., 2001; Leventer et al., 2002; Warner and Domack, 2002; Shevenell and Kenett, 2002; Domack et al., 2005) to the north, and Crystal Sound and Lallemand Fjord to the south (Domack et al., 1995, 2003; Domack and McClennen, 1996; Shevenell et al., 1996; Taylor et al., 2001). Unlike Lallemand Fjord and the Danco Coast, Barilari Bay is not geographically protected from the Bellingshausen Sea, and thus, is more susceptible to oceanic influence. Barilari Bay is also situated at a sub-polar latitude, whereas Lallemand Fjord lies fully south of the Antarctic Circle.

STUDY AREA

Barilari Bay (65°55’S, 64°43’W; Fig. 1) was discovered during the first French Antarctic Expedition of 1903–1905 (Charcot, 1905) and re-charted by the British Graham Land Expedition of 1934–1937 (Rymill, 1938). Historic voyages to Barilari Bay recorded seasonally marine conditions since its discovery. Barilari Bay is a re-entrant in the Graham Land coast with the attribute of a fjord system. It is defined by a northwest-southeast-trending fjord 34 km long and 4.8–11 km wide (Figs. 1 and 2). The fjord can be divided into three sections: the glacier-proximal inner fjord, the middle fjord, and more oceanic outer fjord. The inner fjord of Barilari Bay is characterized by the tidewater fronts of the Bilgeri, Weir, Lawrie, and Birley Glaciers. swath multibeam bathymetric surveys of the inner fjord revealed a prominent grounding zone 5.2 km, 6.3 km, and 4.8 km seaward of the present positions of the Weir, Lawrie, and Birley Glaciers, respectively. The middle fjord is characterized by over-deepened and flatted basins and reaches a depth of 610 m where a zone of at least 35 m of ponded sediment is observed. The outer fjord consists of isolated over-deepened basins (670 m depth) with up to 25 m of ponded sediment, crudely streamlined bedforms including drumlinized and elongated “channel”-appearance bedforms, and crag-and-tail bedforms.

The Olet, Birley, Lawrie, Weir, and Bilgeri Glaciers and several unnamed glaciers draining the Bruce Plateau terminate into Barilari Bay. A shift toward a general trend of glacial...
Late Holocene glacial advance and ice shelf growth in Barilari Bay

Geological Society of America Bulletin, v. 127, no. 1/2 299

retreat between 64°S and 66°S in the AP initiated between A.D. 1955 and 1969 (Cook et al., 2005). This 20th-century pattern is expressed in some ice fronts in Barilari Bay by the demise of small, remnant ice shelves since the 1940s and the retreat of the calving fronts of the Birley Glacier and a small unnamed glacier in the inner fjord in the 1960s (Ferrigno et al., 2008). The Bilgeri Glacier, however, experienced a mean ice advance within this time period, although the extent of advance was not delineated by Ferrigno et al. (2008). The other glaciers draining Barilari Bay have maintained ice-front stability since the 1980s (Ferrigno et al., 2008) (Fig. 2). The recent advance and relative stability of ice fronts in this region of the AP versus mean retreat elsewhere suggests accelerated ice discharge from the Bruce Plateau within the past 50 years. Barilari Bay is 12 nautical miles from the ice core recently drilled at Site Beta on the Bruce Plateau by the Byrd Polar Research Center at the Ohio State University (USA) in 2010, providing the most direct comparison between the marine sedimentary and glacial ice records in the Antarctic.

METHODS

Multi-Proxy Analyses

Core Descriptions

Cores KC-54 and KC-55 were opened, described, and sampled soon after collection during NBP10-01. Core JPC-126 was opened, described, and sampled at the Antarctic Research Facility at Florida State University (USA) in 2010. Sediments were described following the procedures established by Kaharoeddin et al. (1988) with the addition of the use of the term “diamicton” following the discussions after Flint et al. (1960).

Particle Size

Grain size was determined using the Malvern Mastersizer/E particle size analyzer and Malvern software suite at Hamilton College (New York, USA). Bulk sediment samples were dispersed in a dispersant solution (sodium hexametaphosphate) and rinsed once. The grain size classification used is: clay (<3.9 μm), fine- and medium-grained silt (3.9–31.00 μm), coarse-grained silt (31.00–62.5 μm), and sand (>62.50 μm) (Wentworth, 1922). This method of sample preparation and data analysis has been utilized successfully in previous similar studies (e.g., Warner and Domack, 2002).

Lamination and Ice-Rafted Debris Indices

X-rays of each core were used to quantify the number of ice-rafted debris (IRD) grains and laminations present within 5 cm intervals of each core. X-ray images for cores KC-55 and JPC-126 were developed at the Korean Polar Research Institute (KOPRI), Republic of Korea, and for core KC-54 at Hamilton College. The IRD index was determined by counting grains greater than 2 mm in size, excluding grains present at the base of turbidite sequences and clasts in diamicton. Laminations were defined by sequences bounded using the color contrast in X-ray radiographs.

Bulk Organic Geochemistry

Bulk organic geochemistry was evaluated on acid-washed dried sediment using a Delta Plus Ion ratio mass spectrometer with a COSTECH elemental analyzer. Standards and operating

Figure 1. (A) Location of the northern Antarctic Peninsula in Antarctica. (B) North Antarctic Peninsula. Locations with late Holocene records are marked, as well as the location of the Site Beta ice core on the Bruce Plateau.
Figure 2. Surface satellite imagery and multibeam swath bathymetry of Barilari Bay. Sediment core locations are marked. Present glacial flow lines and flow divides are indicated. Bathymetric profile line used in Figure 8 is drawn for reference. Historic ice loss is delineated from Ferrigno et al. (2008). Proposed Little Ice Age ice shelf extends to the outer fjord. Inset (a): Oblique view of grounding line and grounding zone wedge in inner Barilari Bay (4× vertical exaggeration).
and Domack, 2003) in determining short-term chronologies in marine sediment cores in the Southern Ocean and Antarctic fjords. The sediment-water interface was well preserved in both cores as observed at the time of core splitting, and the water content profiles display a logarithmic decrease down core with a mixed surface layer. Subsamples of sediment were taken at intervals of 1 cm (KC-54) and every other centimeter (KC-55) from the surface to 10 cm (KC-54) and 13 cm (KC-55) depth in anticipation of defining the unsupported 210Pb activity, and at progressively greater intervals to 17 cm (KC-54) and 60 cm (KC-55) depth to determine the supported 210Pb activity. Background levels of supported 210Pb were identified in both cores. By calculating the slope (m) of sample depth versus the natural log of the activity (lnA), one can obtain a linear sedimentation rate (LSR) from LSR = −λm, where λ is the 210Pb radioactive decay constant (0.0311 yr⁻¹). Stepped accumulation rates were calculated for both cores based on 210Pb activity, and then each core was assigned a chronology in terms of years before present relative to A.D. 2010.

Radioisotope Dating

Diatoms

Diatom analyses were conducted at Colgate University (New York, USA) and at KOPRI where quantitative diatom slides were prepared following the settling technique described by Scherer (1994). Diatoms were counted along transects at 1000× magnification on a Zeiss Integrated Biological Research system at Hamilton College. Where possible, a total of 400 valves were counted, but where diatom abundances were extremely low, a total of 10 transects were counted. Diatom abundances are calculated as millions of valves per gram dry sediment (mvpgs). Relative abundances of the dominant genus, Chaetoceros, were calculated based on the total abundance counts described above. However, these data are not calculated or presented for counts where absolute diatom abundances were so low that counting was stopped after 10 transects well prior to counting 400 valves. In these samples, diatom abundances were simply too low for a statistically accurate presentation of the contribution of any species to the total assemblage.

Chronology

Cesium-137 A.D. 1963 “Bomb Spike”

The upper 20 cm of core KC-55 was analyzed to determine the calendar year A.D. 1963 A.D. (47 yr B.P. relative to A.D. 2010) using 137Cs. This method has been previously used in the Antarctic to determine anomalously high 137Cs activity attributed to atmospheric fallout from global nuclear weapons testing (Appleby et al., 1995). Samples were collected at the University of Houston and analyzed at Core Scientific International (Winnipeg, Manitoba, Canada).

Lead-210 Activity Series

The recent chronologies of cores KC-54 and KC-55 were constrained using 210Pb activity series. This method has been used (Gilbert and Domack, 2003) in determining short-term chronologies in marine sediment cores in the Southern Ocean and Antarctic fjords. The sediment-water interface was well preserved in both cores as observed at the time of core splitting, and the water content profiles display a logarithmic decrease down core with a mixed surface layer. Subsamples of sediment were taken at intervals of 1 cm (KC-54) and every other centimeter (KC-55) from the surface to 10 cm (KC-54) and 13 cm (KC-55) depth in anticipation of defining the unsupported 210Pb activity, and at progressively greater intervals to 17 cm (KC-54) and 60 cm (KC-55) depth to determine the supported 210Pb activity. Background levels of supported 210Pb were identified in both cores. By calculating the slope (m) of sample depth versus the natural log of the activity (lnA), one can obtain a linear sedimentation rate (LSR) from LSR = −λm, where λ is the 210Pb radioactive decay constant (0.0311 yr⁻¹). Stepped accumulation rates were calculated for both cores based on 210Pb activity, and then each core was assigned a chronology in terms of years before present relative to A.D. 2010.

Results

Core KC-54

Core KC-54 was collected from the edge of the relict grounding zone in the inner fjord of Barilari Bay at a depth of 341 m. 6.3 km seaward of the calving front of the Lawrie Glacier (Fig. 2), and is 134 cm in length. KC-54 is the most glacial-proximal core. The core was divided into: unit 1 (0–11.5 cm); unit 2, which was subdivided to unit 2a (11.5–38 cm) and unit 2b (38–49 cm); and unit 3 (49–134 cm) (Fig. 3). Unit 3 (134–49 cm) is a medium to dark gray, structureless, poorly sorted, sandy, homogenous diamicton that extends 90 cm upcore from the core bottom. MS values are highly variable compared to values in overlying units. We do not identify the clasts in unit 3 as IRD. %TOC is at the lowest levels in the entire core (~0.035%), and δ13Corg values are at their most negative, varying between −23.4‰ and −24.5‰. Total diatom abundance is two orders of magnitude lower in unit 3 than in the overlying units, with an average value of 0.055 mvpgs and a maximum value of only 0.223 mvpgs. Total diatom abundance was so low that relative contributions of species to the total assemblage could not be counted with confidence.

At 49 cm there is a sharp contact between unit 3 and unit 2b. Unit 2b (49–39 cm) is a bluish-gray clayey silt. MS values are lower relative to unit 2a and unit 3. IRD content is sparse within unit 2b. There is a limited but notable increase in %TOC and increase of δ13Corg values relative to unit 3. Total diatom abundance increases and ranges between 0.05 and 4.7 mvpgs, and percent Chaetoceros averages 81. While these are signs of a limited increase in upper ocean
biologic activity, eight laminations and no signs of bioturbation were observed in this unit, hence only minimal benthic activity is inferred.

Unit 2b grades into unit 2a (39–11.5 cm), a dark olive gray, sandy silt containing gravel- to cobble-sized IRD grains. We do not classify unit 2a as a diamict, based on the total fewer number of clasts set in a finer-grained matrix observed in the X-ray image and slightly higher water content relative to unit 3. MS values and IRD are increased in unit 2a relative to unit 2b. IRD content increases upcore from 33 grains at the contact with unit 2b to a maximum of 57 grains between 20 and 25 cm depth, and then decreases to 27 grains at the contact with unit 1. %TOC and diatom abundance are relatively low throughout most of unit 2a. Percent Chaetoceros shows variability between 68.6% and 90%. Grain size finesses upward between 14 and 11.5 cm, and %TOC increases from 0.04% to 0.1%.

δ13Corg values increase upcore into unit 1, and range from –22.9‰ to –24.2‰. Diatom total abundance also increases, ranging between 0.1 and 0.5 µvpgs, with only one sample having a higher abundance of 2 µvpgs at 26–27 cm. Few laminations are observed between 10 and 20 cm depth.

At 11.5 cm there is a sharp contact between unit 2 and unit 1 (11.5–0 cm), which consists of water saturated, bioturbated, diatomaceous, light olive gray clayey silt. Between 11.5 and 10 cm there is an interval of gray gravel and cobbles. MS values gradually decrease upcore, corresponding to higher water content, higher diatom abundance, and lower IRD abundance. δ13Corg is more positive relative to unit 2a but decreases from 5 cm to the core top. %TOC increases upcore from 0.1% and 0.7% to a maximum of 2.4% at 3 cm. Few laminations are observed in this unit. The water content in the upper 15 cm of the core exhibits a logarithmically decreasing downcore trend, indicating that the sediment-water interface was preserved.

Two methods were utilized to establish the chronology for core KC-54: 210Pb activity series and radiocarbon dating. The 210Pb activity series generated an activity profile from which ten ages were calculated. The deepest unsupported 210Pb activity at 13 cm had a calculated age of 98 yr B.P. (A.D. 1912) (Table 1 and Fig. 4). The implied sedimentation rate is 1.33 mm/yr and thus places the bottom of unit 1 (11.5 cm) roughly at A.D. 1925. Three radiocarbon ages were obtained for KC-54: a surface date from...
Figure 3. Multi-proxy results and chronology for Kasten Core 54 (KC-54). Multi-proxy results are shaded with respect to the average value for each individual proxy. Note the change in scale for radiocarbon chronology. Interval used in Figure 4 for the short-term chronology assigned by 210Pb activity series is noted. Due to extremely low total diatom abundances in unit 3, diatom assemblages were not determined (see “Diatoms” section for details). cal.—calibrated; mvpgs—millions of valves per gram dry sediment; IRD—ice-rafted debris.
Core JPC-126

Core JPC-126 is 21.46 m in length and was collected from an isolated basin of ponded sediment ~10 km from the grounding line at a water depth of 642 m (Figs. 2 and 5). The core was divided into three units: unit 1 (0–1.9 m), unit 2 (3.07–18.75 m), and unit 3 (19.10–21.46 m). There are core recovery gaps between each unit attributed to the coring process.

Unit 3 (21.46–19.10 m) consists of olive green diatomaceous, mottled, pebbly sandy silt. MS is lower relative to unit 2 above, reflecting higher diatom content. IRD abundance is enhanced within this interval and reaches a maximum count of 41 grains between 20.47 and 20.52 m. Preserved primary productivity is higher within this unit as indicated by the olive green color and the maximum values of %TOC and δ13Corg of 0.398% and –23.5‰, respectively. Total diatom abundance increases from the sediment-water interface was well preserved during core extraction. KC-55 can be divided into three units: unit 1 (0–20 cm), unit 2 (20–82 cm), and unit 3 (82–425 cm).

Core KC-55

Core KC-55 was collected from an over-deepened basin in the outer fjord in a water depth of 652 m and is 425 cm in length (Figs. 2 and 6). The logarithmic decrease in water content in the upper 25 cm of the core indicates that the sediment-water interface was well preserved during core extraction. KC-55 can be divided into three units: unit 1 (0–20 cm), unit 2 (20–82 cm), and unit 3 (82–425 cm).

Unit 3 (425–82 cm) is a dark olive green, diatomaceous, pebbly, mottled clayey silt, and displays a general upcore trend of increasing MS and IRD content and decreasing preserved primary productivity. Between 425 and 255 cm, MS and IRD content is decreased below their respective average values for the entire core while %TOC, δ13Corg, total diatom abundance, and percent Chaetoceros are higher than average. Enhanced biologic activity is evidenced by the maximum %TOC value of 0.89% at 306 cm, total diatom abundance of 1624 mvpgs at 296 cm, and nine burrows observed between 365 and 395 cm. Enhanced preserved productivity is interrupted within this interval of unit 3 by a sandy silt turbidite between 330 and 341 cm,
which is marked by a layer of very fine-grained sand that fines upward into a greenish gray silt. Between 255 and 135 cm, MS values are fairly stable but increased relative to values below 225 cm. This depth interval has generally higher IRD content; the maximum IRD abundance, 38%

DISCUSSION

Seasonally open marine conditions (i.e., seasonally sea ice covered and seasonally open) have been recorded in Barilari Bay since its discovery in the early 20th century (Charcot, 1905; Rymill, 1938), followed by the loss of small remnant ice shelves around the periphery of the fjord since the 1940s, minor glacial retreat since the 1960s, and stable ice front positions at the head of the fjord since the 1980s (Cook et al., 2005; Ferrigno et al., 2008). We propose a sequence of paleoenvironmental variability in Barilari Bay that constrains the glacial and environmental history based on historical observations, the sedimentary record, and provides a continuous time series and poly-

TABLE 2. LEAD-210 ACTIVITY SERIES CHRONOLOGY

<table>
<thead>
<tr>
<th>Core number</th>
<th>Sample depth interval (cm)</th>
<th>210Pb activity (Bq/g)</th>
<th>Assigned date (A.D.)</th>
<th>Accumulation rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KC-54</td>
<td>0–1</td>
<td>0.326</td>
<td>2000</td>
<td>N/A</td>
</tr>
<tr>
<td>KC-54</td>
<td>1–2</td>
<td>0.333</td>
<td>2005</td>
<td>1.83</td>
</tr>
<tr>
<td>KC-54</td>
<td>2–3</td>
<td>0.272</td>
<td>1998</td>
<td>1.54</td>
</tr>
<tr>
<td>KC-54</td>
<td>3–4</td>
<td>0.197</td>
<td>1992</td>
<td>1.46</td>
</tr>
<tr>
<td>KC-54</td>
<td>4–5</td>
<td>0.193</td>
<td>1985</td>
<td>1.54</td>
</tr>
<tr>
<td>KC-54</td>
<td>5–6</td>
<td>0.142</td>
<td>1977</td>
<td>1.21</td>
</tr>
<tr>
<td>KC-54</td>
<td>6–7</td>
<td>–</td>
<td>1972</td>
<td>2.26*</td>
</tr>
<tr>
<td>KC-54</td>
<td>7–8</td>
<td>0.099</td>
<td>1969</td>
<td>3.23</td>
</tr>
<tr>
<td>KC-54</td>
<td>8–9</td>
<td>0.089</td>
<td>1960</td>
<td>1.06</td>
</tr>
<tr>
<td>KC-54</td>
<td>9–10</td>
<td>0.077</td>
<td>1952</td>
<td>1.38</td>
</tr>
<tr>
<td>KC-54</td>
<td>10–12</td>
<td>–</td>
<td>1945</td>
<td>1.38*</td>
</tr>
<tr>
<td>KC-54</td>
<td>12–13</td>
<td>0.060</td>
<td>1925</td>
<td>0.49</td>
</tr>
<tr>
<td>KC-54</td>
<td>13–16</td>
<td>–</td>
<td>1912</td>
<td>0.81*</td>
</tr>
<tr>
<td>KC-54</td>
<td>16–17</td>
<td>0.018</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>0–1</td>
<td>0.579</td>
<td>2010</td>
<td>N/A</td>
</tr>
<tr>
<td>KC-55</td>
<td>1–2</td>
<td>0.492</td>
<td>2006</td>
<td>2.93</td>
</tr>
<tr>
<td>KC-55</td>
<td>2–3</td>
<td>–</td>
<td>2002</td>
<td>2.55*</td>
</tr>
<tr>
<td>KC-55</td>
<td>3–4</td>
<td>0.481</td>
<td>1998</td>
<td>2.18</td>
</tr>
<tr>
<td>KC-55</td>
<td>4–5</td>
<td>0.396</td>
<td>1991</td>
<td>1.52</td>
</tr>
<tr>
<td>KC-55</td>
<td>5–6</td>
<td>0.274</td>
<td>1981</td>
<td>2.00</td>
</tr>
<tr>
<td>KC-55</td>
<td>6–7</td>
<td>–</td>
<td>1976</td>
<td>2.20*</td>
</tr>
<tr>
<td>KC-55</td>
<td>7–8</td>
<td>0.185</td>
<td>1970</td>
<td>1.49</td>
</tr>
<tr>
<td>KC-55</td>
<td>8–9</td>
<td>0.161</td>
<td>1961</td>
<td>1.12*</td>
</tr>
<tr>
<td>KC-55</td>
<td>9–10</td>
<td>0.141</td>
<td>1958</td>
<td>0.83</td>
</tr>
<tr>
<td>KC-55</td>
<td>10–12</td>
<td>0.101</td>
<td>1949</td>
<td>0.51</td>
</tr>
<tr>
<td>KC-55</td>
<td>12–14</td>
<td>0.104</td>
<td>1929</td>
<td>0.62*</td>
</tr>
<tr>
<td>KC-55</td>
<td>14–16</td>
<td>0.043</td>
<td>1871</td>
<td>0.23</td>
</tr>
<tr>
<td>KC-55</td>
<td>16–18</td>
<td>0.037</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>18–20</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>20–22</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>22–24</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>24–25</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>25–32</td>
<td>0.038</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>32–33</td>
<td>0.026</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>33–40</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>40–41</td>
<td>0.038</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>41–50</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>50–51</td>
<td>0.034</td>
<td>Supported level</td>
<td>†</td>
</tr>
<tr>
<td>KC-55</td>
<td>51–60</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>KC-55</td>
<td>60–61</td>
<td>0.036</td>
<td>Supported level</td>
<td>†</td>
</tr>
</tbody>
</table>

Note: Bq/g—Bequerels per gram of sediment. –* means no sample was analyzed for this depth. N/A—upper-most sample depth; accumulation rate could not be calculated.

*As this sample was at supported level activity, no accumulation rate could be calculated.

*Interpolated value.

Note: All sediment cores were collected on cruise NBP 10-01.

be noted, however, that %TOC in core KC-55 is generally an order of magnitude greater than in the other Barilari Bay cores, reflecting its more open, oceanic setting. $\delta^{13}C_{org}$ demonstrates variability with no discernable trend, varying between $\pm 22.9\%$ at the lower unit contact, $\pm 21.9\%$ at 14 cm, and $\pm 23.5\%$ at the sediment-water interface. Total diatom abundance remains decreased at values similar to those of unit 2. This reflects a general upcore trend of decreasing total diatom abundance initiated at 140 cm in unit 3. Percent Chaetoceros is variable but is lower than the core average. Laminations were not observed in unit 1.

The chronology of core KC-55 was constrained using the A.D. 1963 cesium “bomb spike” (47 yr B.P. relative to A.D. 2010), 210Pb activity series, and radiocarbon dating. The 1963 Cs bomb spike was determined to be at 15–16 cm, with an inferred sedimentation rate of 3.2–3.4 mm/yr (Fig. 6), 210Pb activity series profiles allowed calculation of 14 dates, the oldest at 139 yr B.P. (A.D. 1871) at 16 cm, with an overall sedimentation rate of 1.21 mm/yr (Table 1 and Fig. 4). Radiocarbon dating complements the above geochronological methods and provides a continuous time series and polynomial age model. Six intervals were selected for foraminifera collection: (1) 19–24 cm (units 1 and 2 contact), (2) 49–54 cm (middle of unit 2), (3) 80–84 cm (units 2 and 3 contact), (4) 200–205 cm (unit 3), (5) 250–254 cm (unit 3), and (6) 400–405 cm (core bottom). Table 2 shows the complete radiocarbon results for KC-55. The six radiocarbon dates from KC-55 represent a continuous sedimentation record for the late Holocene in Barilari Bay (Fig. 6) spanning the last 3863 cal. yr B.P. Depth is converted to age using a third-order polynomial derived from the combined radiocarbon dates and 210Pb activity series from KC-55. Under this age model, the sedimentation rate decreases downcore from 1.19 mm/yr at the surface to 0.033 mm/yr at the core bottom.
Figure 5. Multi-proxy results and chronology for Jumbo Piston Core 126 (JPC-126). Multi-proxy results are shaded with respect to the average value for each individual proxy. cal.—calibrated; TOC—total organic carbon; mvpgs—millions of valves per gram dry sediment; IRD—ice-rafted debris.
Late Holocene glacial advance and ice shelf growth in Barilari Bay

Figure 6. Multi-proxy results and chronology for Kasten Core 55 (KC-55). Multi-proxy results are shaded with respect to the average value for each individual proxy. Interval used in Figure 4 for the short-term chronology assigned by 210Pb activity series is noted. The age model is defined by the equation $y = -5E^{-5}x^3 + 0.0241x^2 + 8.4025x$ ($R^2 = 0.99859$) where x is depth (cm) and y is age (cal. yr B.P.). cal.—calibrated; TOC—total organic carbon; mvpgs—millions of valves per gram dry sediment; IRD—ice-rafted debris.
and a lithofacies model described below. The Holocene paleoenvironmental history of Barilari Bay is summarized in a space-time diagram (Fig. 7) that displays the shifts in environmental setting across the fjord through time.

Lithofacies Model

Sediment lithofacies assigned to the cores within Barilari Bay are based upon decades of information obtained from fjords along the AP. What is unique in this particular setting is that the cores were strategically acquired in position to optimize understanding of the subsurface reflectors and integrated within the multi-beam seafloor morphology. We recognize the following lithofacies: (1) compact, structureless diamicton, (2) laminated silt and clay, (3) graded ensembles of interbedded sand and mud, and (4) diatomaceous mud and diatom-bearing mud with variable content of outsized gravel and pebbles. These lithofacies are interpreted respectively as: (1) sub-glacial till, (2) near-grounding line plume and undermelt deposits, (3) turbidite sediment gravity flow deposits, and (4) hemipelagic and ice-rafted deposits. The facies succession as follows from Walther’s Law then allows us to infer changes in depositional environment with constraints upon these various sediments imposed by changing ice shelf cover and glacier extent.

Early and Middle Holocene—Retreated Glacial Positions and Seasonally Open Marine Conditions

Retreated glacial positions during the early Holocene are evidenced by the presence of a mollusk fragment at 69–75 cm depth in core KC-54. The radiocarbon age of this mollusk fragment, 7022 cal. yr B.P. (5072 B.C.), suggests that a younger glacial advance transported

![Figure 7](https://gsabulletin.gsapubs.org)

Figure 7. Space-time diagram of late Holocene paleoenvironments and climatic history in Barilari Bay. Location of sediment cores is indicated, along with chronological data for each: calibrated radiocarbon ages (black circles with gray fill), 210Pb activity series (small black dots), and 137Cs A.D. 1963 bomb spike (small black star). Note change of time scale on right at A.D. 1950 and 4000 yr B.P. LIA—Little Ice Age.
and incorporated the mollusk fragments from somewhere further in to the head of the fjord. Similar evidence for retreated glacial positions in the early to middle Holocene is found in shelly tills on Brabant Island (Hansom and Flint, 1989) and organic fragments recently revealed from beneath the ice cap margin on Anvers Island (Hall et al., 2010).

While the chronology of core KC-55 does not constrain the onset of the middle Holocene, the outer fjord record confirms regional observations of enhanced productivity during the middle Holocene (Domack et al., 2001, 2003). Between 3863 and 2815 cal. yr B.P. (1913–865 B.C.), higher %TOC and less-negative δ13Corg relative to the entire KC-55 core indicate greater productivity. Within this interval, total diatom abundance is greater and the assemblage consists primarily of Chaetoceros resting spores, considered an indicator of high productivity (Leventer et al., 1996), and thus this interval is interpreted as representing productive seasonally marine conditions. Reduced gravel abundance in unit 3 of KC-55 suggests greater distance from calving ice fronts.

Similar evidence for enhanced productivity during the middle Holocene exists in Neny Fjord, Marguerite Bay (Allen et al., 2010), Lallemand Fjord and Crystal Sound (Domack et al., 1995; Shevenell et al., 1996; Taylor et al., 2001), the Palmer Deep (Brachfeld et al., 2003; Domack et al., 2003), and Maxwell Bay, South Shetland Islands (Milliken et al., 2009). Generally, biological productivity is associated with reduced sea ice coverage and prolonged growing seasons. There is an exception in Maxwell Bay where decreased sea-surface temperature and increased sea ice coverage enhanced productivity (Milliken et al., 2009). Recently, Hodgson et al. (2013) suggested extended middle Holocene regional warming on Horseshoe Island, northern Marguerite Bay, likely related to periods of reduced lacustrine-ice cover that stimulated production.

Neoglacial—Climatic Cooling

At 2815 cal. yr B.P. (865 B.C.), productivity began to decline as reflected in the %TOC, δ13Corg, and total diatom abundance proxies in core KC-55 under open marine conditions with greater sea ice coverage.IRD increases upcore in unit 3, suggesting increasing glacial proximity as the calving fronts in Barilari Bay advanced, but seasonally open marine conditions were maintained. In the middle fjord, the late portion of the Neoglacial event is captured in unit 3 of core JPC-126 (>730 cal. yr B.P.; A.D. 1220), which marks open marine and more productive conditions and the absence of active turbidity currents associated with advanced glacial positions discussed in the “Little Ice Age” section.

The Neoglacial event is observed at a number of sites in the western AP and initiated between 3500–2500 years ago (Domack et al., 2003). Allen et al. (2010) presented a sedimentary record of Neny Fjord in Marguerite Bay where the Neoglacial began ca. 2800 cal. yr B.P. (850 B.C.). Taylor et al. (2001) proposed that the Neoglacial initiated at 2880 cal. yr B.P. (930 B.C.) in Lallemand Fjord, but increased sea ice coverage may have begun as early as 4420 cal. yr B.P. (2470 B.C.). Further north at the Palmer Deep, the Neoglacial began at 3360 cal. yr B.P. (1410 B.C.) and is marked by a decline in productivity and sedimentation rates (Leventer et al., 1996; Domack et al., 2001, 2003). In Maxwell Bay, this period is placed between 2600 yr B.P. and the present, although the sedimentological character shows little evidence of this climatic event (Milliken et al., 2009).

While δ13Corg in the outer fjord of Barilari Bay is enriched between ca. 1325 yr B.P. and 626 yr B.P. (A.D. 625–1324), we do not observe strong evidence for a Medieval Warm Period (MWP) event. Productivity in the outer fjord remains decreased as indicated by decreasing %TOC, total diatom abundance, and percent Chaetoceros within this same time interval. The MWP is recognized regionally in the western AP by enhanced productivity in more oceanic settings such as the Palmer Deep and Crystal Sound between 1150–700 yr B.P. (A.D. 850–1300), but is less evident in glacial-proximal environments such as Lallemand Fjord (Domack et al., 2003).

Little Ice Age (LIA)

Glacial Advance and Ice Shelf Development

All three sediment cores provide evidence for climatic cooling and glacial advance with associated development of an ice shelf during the LIA between ca. 730 and 82 cal. yr B.P. (A.D. 1220 and 1868). In the inner fjord, core KC-54 lies at the edge of the fluted glacial zone wedge and captures the maximum Holocene glacial position (Fig. 8A). Unit 3 of KC-54 documents the inner fjord in a sub-glacial environment during the last glacial advance in Barilari Bay. The poorly sorted homogenous diamicton with generally lower water content suggests deposition from sub-glacial processes. Very low %TOC and total diatom abundance and highly negative δ13Corg indicate lower primary productivity caused by light limitation and other biological activity.

Glacial advance in Barilari Bay altered sedimentological processes across the entire fjord. In core JPC-126, the transition to the LIA is recognized at ca. 730 cal. yr B.P. (A.D. 1220) by a shift to gray laminated silt with interbedded sandy turbidite sequences (unit 2) deposited as glaciers advanced to the edge of the glacial margin. At these advanced positions, meltwater pulses along the grounding line ejected sediment plumes into the fjord, depositing laminated silts and clays. Fluctuations of the ice margin at this advanced position caused portions of the edge of the grounding zone wedge to collapse, and turbidity currents carried sediment through channels toward the zone of ponded sediment in the middle fjord. Both of these depositional processes likely increased sedimentation rates within the middle fjord relative to seasonally open marine conditions.

The decay of remnant ice shelves demonstrated in historic records and our sedimentological evidence suggests that a prehistoric ice shelf expanded across Barilari Bay during the LIA. This environment is marked by both low IRD abundance and decreased productivity within this time interval. In the presence of the ice shelf, and thus absence of iceberg calving processes, entrained glacial debris is not rafted from the ice margin and deposited across the fjord. Sub–ice shelf conditions precluded primary productivity as expressed in the decreased %TOC, more-negative δ13Corg values, reduced total diatom abundance, and fewer Chaetoceros within this interval. However, enhanced sedimentation rates under the advanced glacial position may partially mask biogenic sedimentation in this interval and region of the fjord. An open marine influence was maintained near the ice shelf margin as diatoms were likely transported under the ice shelf by wind-driven surface currents.

In the outer fjord of Barilari Bay, the LIA is captured between 626 and 82 cal. yr B.P. (A.D. 1324–1868) in unit 2 of core KC-55, which is marked by a fining of grain size and decreased primary productivity. The fining in grain size and increasing upcore trend in MS reflects increased fine-grained siliciclastic preservation instead of dissolution of fine-grained magnetite in the zone of low %TOC, and reduction in biogenic input from diatoms. The negative shift in δ13Corg and decrease in %TOC, total diatom abundance, and percent Chaetoceros, are attributed to the expansion of the ice shelf into or near the outer fjord and more pervasive sea ice coverage. This reduction in productivity and fining of particle size is comparable to trends observed in Lallemand Fjord when the Müller Ice Shelf expanded during the LIA 400 yr B.P. (Domack et al., 1995; Shevenell et al., 1996).

Given the olive gray color, diatomaceous nature of the sediment, and %TOC values that are an order of magnitude greater than in the middle
Figure 8. Schematic diagram of Barilari Bay. The bathymetric profile traced along the fjord axis in A and B can be found in Figure 2. Cross-section view is looking to the northeast. Numbers refer to environmental and sedimentological processes active during this each climate event. (A) Little Ice Age conditions: 1—fjord-wide ice shelf; 2—increased sea ice coverage and fast ice; 3—decreased primary productivity; 4—reduced basal melting of the ice shelf; 5—ejection of meltwater plumes of fine-grained siliciclastic sediment; 6—glacial advance to maximum Holocene positions over a fluted grounding zone wedge; 7—turbidity currents emanating from the grounding line. (B) Modern seasonally marine conditions in Barilari Bay: 1—seasonally open marine conditions; 2—increased primary productivity; 3—increased iceberg calving and ice-rafted debris deposition; 4—re-treated glacial positions with frontal melting at the calving fronts; 5—absence of turbidity currents and meltwater plumes.
and inner fjord in this interval, proximity to the ice shelf front and seasonally marine conditions, albeit with greater sea ice coverage, must have been maintained. A bathymetric rise northeast of the mouth of the fjord may have served as a pinning point for the expanded ice shelf. Under this scenario, IRD in unit 2 of KC-55 may have been sourced from the grounding line of the advanced Otlet Glacier, where basal melt-out could have supplied IRD grains.

The precipitation accumulation zone and rate must have increased to allow glacial advance, and the ablation zone and rate must have decreased for the ice shelf to expand. Further south on the AP (75°55'S, 84°15'W), the ice core from Siple Station records relatively warmer conditions and decadal-scale periods of increased snow accumulation rate, possibly due to intensification of the Southern Westerlies between A.D. 1500 and 1900 (Mosley-Thompson et al., 1990). While increased snow accumulation could have caused a positive shift in the mass balance for western AP glaciers, higher temperatures contradict the expansion of an ice shelf in Barilari Bay, as it implies that the −5 to −9 °C isotherm did not migrate north during the LIA. We propose, therefore, a shift in oceanographic conditions that decreased frontal melting and undermelting of glacier fronts, allowing the expansion of the Barilari Bay ice shelf. Reduced upwelling of warm, saline circumpolar deep water (CDW) during the LIA interval may have permitted the formation of the ice shelf in Barilari Bay. The advance of the Müller Ice Shelf at 400 yr B.P. (Domack et al., 1995) further south in Lallemand Fjord suggests a regional climatic shift that encouraged ice shelf growth during the LIA and has also been attributed to decreased presence of CDW.

Ice Shelf Recession and Glacial Retreat

At the edge of the grounding zone in core KC-54, the sharp contact between diamict (unit 3) and laminated clayey silt (unit 2b) marks initial glacial retreat. The appearance of IRD, fining in grain size, and decrease in MS values relative to unit 3 indicate a transition from sub-glacial deposition to pelagic sedimentation. Laminations suggest deposition related to meltwater pulsing near the grounding zone. The limited increase in %TOC and δ13Corg reflects continued low primary productivity under sub-ice shelf conditions. Reduced biologic activity is also evidenced by the bluish gray color of the unit, low abundance of microfossils, and preservation of laminations that would otherwise be disturbed by bioturbation under more productive conditions. Unit 2b was deposited in proximity to grounded ice, but some distance from the calving front of the ice shelf; thus the transition between units 3 and 2b represents an ice “back-off” event from the edge of the grounding line and occurred sometime prior to 252 ± 137.5 cal yr B.P. (A.D. 1698). This suggests that the maximum extent of ice advance during the LIA occurred in the first half of the LIA (730 to >252 cal. yr B.P.; A.D. 1220 to >1698) followed by slow, gradual retreat until 82 yr B.P. (A.D. 1868).

The demise of the LIA ice shelf in Barilari Bay may be analogous to recent observations below the ice shelf extending from the Pine Island Glacier in West Antarctica, where an ice “back-off” event was observed at Pine Island Glacier in the late 1970s (Jenkins et al., 2010). Jenkins et al. (2010) suggested that although the ridge feature along the edge of the grounding line initially impeded influx of warm, saline CDW to the base of the glacier, thinning of the ice shelf from above by increased atmospheric temperatures and from below by CDW enlarged the cavity between the edge of the grounding line and glacier base, ultimately increasing and accelerating ice retreat. While the ice shelf in Barilari Bay may have receded in a similar fashion, the timing of the initial ice “back-off” event some time prior to 252 cal. yr B.P. suggests that ice recession in this study area was much more gradual.

Unit 2a in core KC-54 signifies that the complete transition from sub-ice shelf to open marine conditions in the inner fjord occurred between 252 ± 137.5 cal yr B.P. (A.D. 1698) and 98 yr B.P. (A.D. 1912). Although the first French Antarctic Expedition recorded seasonally open marine conditions in Barilari Bay between A.D. 1903 and 1905, expedition records are not specific regarding conditions in the inner fjord (Charcot, 1905). The charts produced by the British Graham Land Expedition, however, explicitly record seasonally open marine conditions in Barilari Bay between A.D. 1934 and 1937 (Rymill, 1938). Grain size gradually coarsens upwards, with enhanced IRD deposition indicating increasing input of terrigenous sediment as entrained debris fell out of the receding ice shelf, similar to observations at the former Prince Gustav Channel and Larsen A ice shelves (Gilbert and Domack, 2003). The increased flux of terrigenous sediment into the inner fjord masked the input of biologic components as shown by the decreased %TOC. The maximum number of IRD grains occurring between 20 and 25 cm marks the point in time when the calving front was most proximal to the KC-54 collection site. Above 20 cm, IRD abundance and MS values decrease, followed by significantly increased productivity proxies indicating that the calving front retreated landward toward its present position, affording more open marine conditions at the site.

Modern Warming

Unit 1 in core KC-54 represents the modern open marine conditions that facilitate primary productivity as indicated by maxima in %TOC and δ13Corg. Benthic activity is indirectly documented by bioturbation. IRD and MS decrease upcore, marking greater distance from the core collection site to, and less terrigenous sediment input from, the glacier fronts. The horizon of cobbles and gravel at 10 cm is interpreted as an ice rafting event where the calving front was landward of the KC-54 collection site. The reduced flux of terrigenous sediment also enhances the biologic signal preserved in unit 1. Figure 8B illustrates Barilari Bay under seasonally open marine conditions.

In the middle fjord, the transition from sub-ice shelf to seasonally open marine conditions occurs between unit 2 and unit 1 in JPC-126. Due the core recovery gap that exists between 1.87 and 3.07 m, the exact timing of this climatic shift is not constrained in the middle fjord. Unit 1 of core JPC-126, however, indicates an environmental shift toward open marine conditions. The most notable changes are the absence of sandy turbidite sequences and presence of IRD relative to unit 2. As glacial positions retreated, the ice margin no longer stood at the edge of the grounding zone. As a result, meltwater pulsing along the grounding line ceased along with slope instability and associated turbidity currents. Glacial retreat and the gradual demise of the ice shelf also increased calving events and consequently IRD deposition. Interestingly, total diatom abundance and percent Chaetoceros do not rebound in the upper unit; however, the sediment-water interface, and thus possibly the transition to more productive open water conditions, was not well preserved in JPC-126.

In the outer fjord, ice shelf recession and glacial retreat was completed by 82 cal. yr B.P. (A.D. 1688), and the modern seasonally open marine conditions are represented by unit 1 in KC-55. This environmental shift toward seasonally open marine conditions is expressed by a rebound in productivity and coarsening of grain size upcore, with a related reduced MS signal. Total diatom abundance continues to decrease upcore in unit 1 however, despite an increase in %TOC. This suggests that primary productivity increased as a consequence of increased abundance of groups other than diatoms—presumably a soft-bodied algae, perhaps cryptophytes, as have been observed to be associated.
with increased glacial meltwater and lower sea surface salinities (Moline et al., 2004). The variability in \(^{87}^{13}C_{\text{org}}\) may further reflect oceanographic changes that may have affected the local biological community.

Comparison with Late Holocene Glacial Records in the Southern Hemisphere

The timing and magnitude of LIA glacial advance in Barilari Bay corresponds to regional enhanced climatic cooling and glacial advance in the AP, but the LIA is asynchronous with glacial records from elsewhere in the Southern Hemisphere. Compiled late Holocene glacial records from middle to high latitudes in the Southern Hemisphere are presented in Figure 9. The following chronology summary will be discussed in terms of calendar years (B.C./A.D.) where possible, or in terms originally used by the authors where conversion to calendar years was not possible.

South of the polar front and across both the western and eastern AP, the Barilari Bay record confirms a tightly constrained period of glacial advance between A.D. 1200 and 1400. Glacial advance in Barilari Bay is broadly coincident with the advance of the Müller Ice Shelf at ca. A.D. 1600 (Domack et al., 1995), and regional cooling and decreased productivity across the western AP between A.D. 1300 and 1850 (Domack et al., 2003). The terrestrial glacial record on Anvers Island is also in agreement, as the Marr Ice Piedmont advanced sometime after A.D. 1250 (Hall et al., 2010). The Barilari Bay record corresponds to the glacial advance in the eastern AP where both terrestrial (Balco et al., 2013) and glacial marine (Gilbert and Domack, 2003; Brachfeld et al., 2003) evidence indicates late Holocene glacial advance and re-establishment of the Prince Gustav Channel and Larsen A ice shelves between A.D. 1300 and 1600. The Collins Ice Cap on King George Island in the South Shetland Islands advanced at A.D. 1300 (Hall, 2007). Late Holocene glacial advances in the AP and the South Shetland Islands coincide with two periods (A.D. 1275–1300 and A.D. 1430–1455) of abrupt and intensified cooling and sea ice growth around Iceland and Arctic Canada, attributed to volcanic forcing (Miller et al., 2012), but predate the classically defined period of LIA alpine glacial advance in the European Alps (Lamb, 1985).

North of the polar front on South Georgia, a late Holocene advance occurred at A.D. 900 and predates glacial advance in the AP and South Shetlands (Clapperton et al., 1989; Bentley et al., 2007). This advance was during a period of relatively warmer conditions and reduced ice extent in the western AP (Domack et al. 2003). Glacial advance on South Georgia is attributed to increased precipitation afforded by southern excursion of the Southern Westerlies, warmer temperatures, and reduced sea ice conditions, leading to the anti-phase relationship with AP glacial records (Bentley et al., 2007). Glaciers in the Kerguelen Islands in the southern Indian Ocean were at maximum Holocene positions in the late 19th century (Frenot et al., 1993).

In southern South America, there is general synchronicity with the AP for glacial advance between A.D. 1200 and 1400, but the records later diverge, as additional pulses of glacial advance are observed during the classically defined LIA period. In Tierra del Fuego, the Ema Glacier advanced in sync with AP glaciers at 695 \(^{14}C\) yr B.P. but then readvanced between 379 \(^{14}C\) yr B.P. and 60 yr B.P. (Strelin et al., 2008). In the Gran Campo Nevado (Chile), Glaciar Lengua advanced to maximum Holocene positions between A.D. 1280 and 1460, followed by overall retreat and six smaller, punctuated advances between A.D. 1628 and 1941 (Koch and Kilian, 2005). Further north in the Monte Fitz Roy region (Argentina), glaciers reached maximum LIA positions later, in the A.D. late 1500s to early 1600s (Masiokas et al., 2009). In the Southern Patagonian Ice Field and Northern Patagonian Ice Field, LIA glacial advance ages range from A.D. 1220 to 1890, but a majority of Southern Patagonian Ice Field glaciers advanced after A.D. 1600 (Glasser et al., 2004). Most of the outlet glaciers in the Northern Patagonian Ice Field advanced later, between A.D. 1650 and 1766, and retreated from their maximum late Holocene positions between A.D. 1860 and 1870 (Harrison et al., 2007). In the northern sector of the Northern Patagonian Ice Field, the Gualas Glacier advanced to maximum Holocene positions between 2230 B.C. and A.D. 1100, and experienced three smaller advances between A.D. 1790 and 1940 (Bertrand et al., 2012).

In New Zealand, late Holocene glacial advance occurred out of sync with the AP and southern South America and at the end of the classic LIA time period. On the western side of the divide of the Southern Alps, the Strauchon Glacier advanced prior to the AP and southern South America glaciers at 390 B.C., A.D. 310, and A.D. 910 (Winkler, 2009). The Franz Josef Glacier, however, advanced during the classic LIA time frame, with the most extensive advance some time before A.D. 1600 and smaller advances at A.D. 1600 and A.D. 1800 (McKinsey et al., 2004). On the eastern side of the Southern Alps, glaciers advanced to maximum positions in the early and middle Holocene. Late Holocene glacial advance on the eastern side of the Southern Alps occurred slightly later than in the AP and southern South America. The Mount Cook glaciers advanced at A.D. 1440 (Schafer et al., 2009), and the Cameron Glacier advanced at A.D. 1362 and A.D. 1492, followed by smaller advances after A.D. 1770 (Putnam et al., 2012). On the North Island, Mount Taranaki glaciers retreated after A.D. 1500 (Brook et al., 2011). The asynchronous behavior of New Zealand glaciers during the classic LIA has been attributed to a shift to a negative phase of the Interdecadal Pacific Oscillation (Schafer et al., 2009) and the southern migration of the Intertropical Convergence Zone (Putnam et al., 2012), both of which bring warmer and drier conditions to New Zealand.

The timing of LIA glacial advances is increasingly younger to the north from the AP toward the Northern Patagonian Ice Field, indicating that the LIA was not a synchronous event across the southeast Pacific sector. This chronological progression may be in response to northward migration of the Southern Westerlies, which control storm tracks, regional precipitation, cloud cover, and temperature patterns that influence local glacial behavior (Holmlund and Fuenzalida, 1995; Bertrand et al., 2012). Alternatively, the overall pattern may reflect the response time of the glacial system under a uniform climatic shift. If climatic episodes appropriate to induce glacier growth take place across the entire region (Patagonia to AP) and are of limited duration, then asynchronous response may simply indicate the lag time for colder and more sluggish systems (i.e., those in the AP). If the forcing factor is of long enough duration, then a delayed response across the region should reflect the varying response times across glacial dynamic boundaries. We suggest that the AP glaciers indeed may be sluggish, as their calving lines are not as easily stabilized by sediment provisioning in deep water, and fast ice to ice shelf transitions may take several decades, under a generally colder climate. Indeed, sediment delivery rates are higher and ice flow dynamics are greater for Patagonian glaciers than their counterparts in the AP (Boldt et al., 2013).

CONCLUSIONS

Based on our observations and the historical record, we propose this high-resolution chronology of paleoenvironmental history in Barilari Bay (Fig. 7):

1. Early Holocene and middle Holocene (>2815 cal. yr B.P.; >865 B.C.) retreated glacial positions and seasonally open marine conditions with enhanced primary productivity;
2. Neoglacial (2815 to ca. 730 cal. yr B.P.; 865 B.C. to A.D. 1220) seasonally open marine conditions with increased sea ice coverage—
Late Holocene glacial advance and ice shelf growth in Barilari Bay

1. We do not observe strong evidence for a MWP event in Barilari Bay;
2. Little Ice Age (ca. 730–820 cal. yr B.P.; A.D. 1220–1868) glacial advance to maximum Holocene positions and development of a fjord-wide ice shelf—prehistoric glacial retreat and gradual recession of the ice shelf initiated some time prior to 252 cal. yr B.P. (A.D. 1698);
3. Modern seasonally open marine conditions and loss of remnant ice shelves within the context of recent rapid regional warming (82 cal. yr B.P. to present; A.D. 1868 to present).

The late Holocene record from Barilari Bay is the first precisely constrained LIA glacial advance and ice shelf expansion record in Graham Land, western AP, that is concurrent with the classic definition of the LIA in the Northern Hemisphere (Lamb, 1985; Grove, 1988). Prior efforts in the western AP were inferential in terms of the actual advanced position of ice shelves and/or terrestrial termini, but no grounding limits had been defined (Domack et al., 1995, 2003; Shevenell et al., 1996; Hall, 2007; Hall et al., 2010). The Barilari Bay sedimentary record will be greatly bolstered by results from the Site Beta ice core on the Bruce Plateau collected only 12 nautical miles east of Barilari Bay. This combined data set will provide the most direct correlation of marine sedimentary and cryospheric climatic records in Antarctica to date.

The Barilari Bay record further supports a regional LIA climate signature in the AP but highlights intra-hemispheric and global disparities in the timing and magnitude of the latest Holocene glacial advance. The overall asyn-
chronous late Holocene glacial record across the Southern Hemisphere demonstrates the issues involved in globally extrapolating the original definition of the LIA in the European Alps. In comparing glacial records across the Southern Hemisphere, there is evidence for broad late Holocene advance, but the exact timing varies according to region. The synchronicity of glacial advance in the AP, and to some degree in southern South America, during periods of abrupt and intensified cooling and sea ice growth in Arctic Canada and Iceland (A.D. 1275–1300 and A.D. 1430–1455) strengthens the case for the onset of global LIA cooling due to volcanic forcing (Miller et al., 2012), but intra-hemispheric disparities remain. The late Holocene glacial record of southern South America, however, diverges from the AP, as additional advances occurred during the classic LIA period and were progressively younger northwards. This broad asynchronous trend in the southeast Pacific sector may reflect changes in the migration of the Southern Westerlies. Late Holocene glacial behavior in New Zealand is asynchronous with the southeast Pacific, suggesting that the colder, wetter conditions of the classic LIA were not globally distributed to the southwest Pacific. While the timing of late Holocene glacial advance is asynchronous, ongoing rapid retreat over the past 150 years in the Southern Hemisphere, particularly within the AP, reaffirms that anthropogenic climate forcing is manifestly ongoing.

ACKNOWLEDGMENTS

The data for this study were collected on the 2010 LARISSA cruise. We acknowledge the NBPO-01 Shipboard Scientific Party for field support and various discussions in and out of the field. We also thank the RV/IB Nathaniel B. Palmer crew and Raytheon Polar Services technical personnel for the support during the cruise. We thank the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS) at Woods Hole Oceanographic Institution for analysis of the radiocarbon samples used in this study. This project was funded by the National Science Foundation Office of Polar Programs awards NSF OPP ANT-0732467 to Hamilton College, NSF OPP ANT-0732625 to Colgate University, NSF OPP ANT-0732624 to University of Houston, and NSF OPP ANT-0732605 to Montclair State University, and the Korean Polar Research Institute (KOPRI) grant PPI4010. We thank the students of the LARISSA short course on the Antarctic Peninsula for assisting in generating the dataset for core KC-54. Finally, we thank Joel Pederson and three anonymous reviewers for their constructive comments that greatly improved this manuscript.

REFERENCES CITED

Hall, B.L., Kottmann, T., and Denton, G.H., 2010, Reduced
Harris, P.T., Domack, E., Manley, P.L., Gilbert, R., and
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Jackson, J.V., Applegate, J.L., Knuttel, S., and Breza, J.R., 1988,
Late Holocene glacial advance and ice shelf growth in Barilari Bay, Graham Land, west Antarctic Peninsula

Andrew J. Christ, Manique Talaia-Murray, Natalie Elking, Eugene W. Domack, Amy Leventer, Caroline Lavoie, Stefanie Brachfeld, Kyu-Cheul Yoo, Robert Gilbert, Sun-Mi Jeong, Stephen Petrushak, Julia Wellner and the LARISSA Group

Geological Society of America Bulletin 2015;127, no. 1-2;297-315
doi: 10.1130/B31035.1